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Abstract. A major goal of the national aquatic surveys being conducted by the Environmental Protection 
Agency in partnership with the states and tribes is to assess the relative importance, at a regional scale, of 
stressors that impact aquatic biota. The Wadeable Streams Assessment (WSA) was a prototype of these 
surveys, and it assessed 8 individual water-chemistry, physical-habitat, and landuse stressors in 2 ways. 
First, the WSA estimated the total length of streams in a region that was deemed to be in poor condition for 
each stressor considered separately. Estimates of stressor extent describe the prevalence and regional breadth 
of each stressor’s potential effects. Second, the WSA estimated each stressor’s relative risk, a measure widely 
used in human epidemiology. Relative risk estimates a stressor’s association with biota in terms of the 
likelihood that poor stressor conditions and poor biota conditions co-occur in a region’s streams. We 
describe how the population attributable risk, also borrowed from epidemiology, combines extent and relative 
risk into a single, overall measure of a stressor’s regional effect. The attributable risk of a stressor is the % 
reduction in the regional extent of poor biological condition (measured here by the macroinvertebrate index 
of biotic integrity [MIBI]), that presumably would result from eliminating that stressor. Under the 
attributable risk assumptions, for example, the WSA data imply that the nationwide extent of poor MIBI 
conditions would be reduced by an estimated 26% if excess total P were eliminated as a stressor, but only by 
3% if excess salinity were eliminated. We also illustrate the attributable risk for the combined effects of 
multiple, correlated stressors. Last, we discuss how best to interpret and apply attributable risk estimates. 

Key words: Wadeable Streams Assessment, stressor ranking, macroinvertebrate, categorical data anal­
ysis. 

The Wadeable Streams Assessment (WSA) was 
designed to evaluate the condition of streams and 
rivers throughout the contiguous US (USEPA 2006). As 
a critical component of this evaluation, the WSA 
assessed the extents and probable effects of selected 
aquatic stressors within major subregions and nation­
wide. Numerous statistical tools are available to help 
assess stressors for individual streams or watersheds 
(USEPA 2000, Yuan and Norton 2004, http://cfpub. 
epa.gov/caddis), but few of these tools are clearly 
applicable at broad regional and national scales. 

Van Sickle et al. (2006) suggested 2 additional tools 
that seem particularly useful for regional surveys, such 
as the WSA. First, they suggested estimating the 
regional extent of each stressor. A WSA-type survey is 
designed to describe the regional distributions of �1 
stressor indicators. By specifying a range of elevated 
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values that describe poor condition for any given 
stressor, one can estimate the percentage of stream 
length in a region that is in poor condition for that 
stressor directly from its regional distribution. This 
percentage expresses the overall extent, or regional 
prevalence, of elevated stressor levels without attempt­
ing to identify specific streams or rivers having those 
levels. An aquatic stressor in poor condition for a large 
proportion of regional stream length is clearly of 
potential concern. 

A stressor is also of regional concern if its elevated 
levels, whenever they do occur, have a strong and 
deleterious effect on stream ecosystems. Van Sickle et 
al. (2006) proposed calculating relative risk, a measure 
borrowed from epidemiology, to describe the observed 
association between poor stressor conditions and poor 
conditions of a biological indicator such as an index of 
biological integrity (IBI; Karr 1981). Extent and relative 
risk estimates can help to evaluate policy and 
management options, but a single measure that 
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TABLE 1. Condition class thresholds for the macroinvertebrate index of biotic integrity (MIBI) and 7 stressor indicators for 9 
aggregated ecoregions (Fig. 1) sampled in the Environmental Protection Agency Wadeable Streams Assessment. In each cell, poor 
and good conditions are defined by the 1st and 2nd inequalities, respectively. Values between the 2 thresholds are designated as fair 
condition. Aggregated ecoregions are further grouped into 3 major regions (Plains/Lowland [PLLOW], West [WEST], and Eastern 
Highlands [EHIGH]) for reporting of stressor and biological conditions. For a unitless indicator, parentheses contain the range of 
values observed in all WSA samples. N ¼ total N, P ¼ total P, RD ¼ riparian disturbance, SS ¼ stream sediments, I-SFH ¼ instream 
fish habitat, RVC ¼ riparian vegetation cover, SAL ¼ salinity. 

Aggregated ecoregion MIBI N P RD SSa I-SFH RVC SAL 

(major region) (0, 94) (lg/L) (lg/L) (0, 5.9) (-4.4, 1.9) (0, 3.2) (0, 2.8) (lS/cm) 

Coastal Plains (PLLOW) ,42 .2078 .108 .1.5 ,–3.1 or .0.2 ,0.41 ,0.62 .1000 
56 <1092 <56 ,0.33 –2.4 and <–1.3 0.49 1.02 <500 

Northern Appalachians (EHIGH) ,49 .441 .16 .1.5 ,–1.4 or .0.0 ,0.25 ,0.50 .1000 
63 <329 <8 ,0.33 –0.9 and <–0.3 0.35 0.90 <500 

Northern Plains (PLLOW) ,41 .1570 .183 .1.5 ,–2.6 or .0.0 ,0.17 ,0.27 .2000 
55 <948 <92 ,0.33 –2.0 and <–0.5 0.31 0.49 <1000 

Southern Appalachians (EHIGH) ,37 .535 .24 .1.5 ,–1.2 or .0.7 ,0.10 ,0.36 .1000 
51 <296 <18 ,0.33 –0.6 and <0.2 0.28 0.76 <500 

Southern Plains (PLLOW) ,30 1570 .95 .1.5 ,–2.6 or .0.0 ,0.17 ,0.27 .2000 
44 <698 <52 ,0.33 –2.0 and <–0.5 0.31 0.49 <1000 

Temperate Plains (PLLOW) ,31 .3210 .338 .1.5 ,-2.6 or .0.0 ,0.18 ,0.21 .2000 
45 <1750 <165 ,0.33 –2.0 and <–0.5 0.25 0.35 <1000 

Upper Midwest (PLLOW) ,34 .1300 .45 .1.5 ,–1.5 or .0.2 ,0.15 ,0.27 .1000 
48 <716 <22 ,0.33 –1.3 and <–0.5 0.65 0.88 <500 

Western Mountainsb (WEST) ,40 .229 .36 .1.5 ,0.23 .1000 
54 <131 <14 ,0.33 0.67 <500 

Northern Rockies ,–1.8 or .0.1 ,0.18 
–1.1 and <–0.4 0.34 

Pacific Northwest ,–1.3 or .0.6 ,0.14 
–0.7 and <0.1 0.33 

Southern Rockies ,–1.6 or .0.3 ,0.10 
–0.9 and <–0.2 0.37 

Southwest ,–1.3 or .0.3 ,0.15 
–0.6 and <0.1 0.65 

Xeric (WEST) ,40 .462 .70 .1.5 ,–1.7 or .0.3 ,0.13 ,0.32 .1000 
53 <246 <36 ,0.33 –0.9 and <–0.1 0.27 0.60 <500 

a Any value that lies beyond the stated thresholds in either direction is assigned poor condition, and any value within the stated 
interval is assigned good condition; other values are designated as fair condition. 

b Different SS and I-SFH thresholds are specified for each of 4 subecoregions. 

combines information from the 2 estimates would be 
helpful. 

We propose using population attributable risk, also 
borrowed from epidemiology, to combine relative risk 
and extent into an estimate of a stressor’s net effect on 
a regional population of streams. We estimate the 
population attributable risks of 7 WSA stressors, using 
the macroinvertebrate IBI (MIBI) as a biological 
response indicator. We also illustrate how to estimate 
the combined attributable risk of the joint effects of 
multiple correlated stressors. Before discussing attrib­
utable risk, we review the definitions of stressor extent 
and relative risk, and we describe how these measures 
were applied to 7 stressors in the WSA, as summarized 
by Paulsen et al. (2008). We use the extent and relative 
risk results to motivate development of attributable 
risk. We use the attributable risk results for individual 
stressors, in turn, to motivate an assessment of the 

combined attributable risk for closely related stressors. 
Therefore, we have structured our paper as a sequence 
of methods, followed immediately by results, for each 
of the 3 analyses. 

Methods and Results 

Classification of stressor and response indicators 

The WSA partitioned the continuous gradient of 
each continuous stressor and biological response 
indicator into 3 condition classes. Good, fair, and poor 
classes were defined to represent indicator ranges that 
are, respectively, not different from, somewhat differ­
ent from, and markedly different from the range 
sampled at a set of independently determined, least-
disturbed reference sites (Stoddard et al. 2006b, Van 
Sickle et al. 2006). 

Condition class thresholds for the WSA (Table 1) 
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FIG. 1. Aggregated ecoregions (Omernik 1987) in the US 
used for assigning region-specific condition class thresholds 
(Table 1). CPL ¼ Coastal Plains, NAP ¼ Northern Appala­
chians, NPL ¼ Northern Plains, SAP ¼ Southern Appala­
chians, SPL ¼ Southern Plains, TPL ¼ Temperate Plains, 
UMW ¼ Upper Midwest, WMT ¼ Western Mountains, and 
XER ¼ Xeric. 

were assigned separately for each of 9 aggregated 
ecoregions (Fig. 1; Omernik 1987). Most thresholds 
were based on regional distributions of observed 
values at reference sites. For example, thresholds for 
total N (N), total P (P), and salinity (SAL) were 
equated to the estimated 25th percentile (good/fair) 

5thand percentile (fair/poor) of each indicator 
observed in the nutrient reference sites in each region. 
A similar approach was used for the MIBI (Herlihy et 
al. 2008) and for the 4 physical-habitat stressors. In 
some cases, WSA thresholds varied widely across the 9 
ecoregions (Table 1). Thus, the good, fair, or poor 
classification of any WSA site should be interpreted 
relative to the least-disturbed reference conditions of 
the region in which that site is located. 

We assessed stressors and responses in terms of 
condition classes rather than continuous indicators for 
3 reasons. First, condition classes provide a common 
currency for comparing stressors that are not com­
mensurate in their original units (Achen 1982, Green­
land et al. 1986). Second, continuous indicators such as 
instream fish habitat cover (I-SFH) and the MIBI have 
measurement scales that are unfamiliar to managers, 
policymakers, and the general public (Van Sickle et al. 
2006). Third, the use of classes allowed us to express 
stressor–response associations in terms of risk, a  
concept that is familiar to most people. 

Relative extent and relative risk 

Definitions and properties.—Let SP and SG denote the 
event that a stressor, S, is in poor or good condition, 
respectively. Then the relative extent of SP is the 

proportion of total regional stream length in poor 
condition for that stressor (Van Sickle et al. 2006). 
Relative extent is equivalent to the probability of 
finding SP in a randomly selected stream, denoted by 
Pr(SP). Pr(YP) denotes the relative extent of poor 
condition for a biological response indicator, Y. 

Relative risk (RR) is a ratio of 2 probabilities (Lachin 
2000). Its numerator is Pr(YPjSP), defined as the 
conditional probability (i.e., the risk) of finding poor 
biological condition (YP) at a site, given that the site is 
also in poor condition for the stressor. The denomina­
tor is the baseline conditional probability of YP, given 
that the stressor is in good condition at the site, i.e., 

PrðYPjSPÞ 
RR ¼ : ½1]

PrðYPjSGÞ 

RR measures the strength of association between the 
condition classes of a biological response indicator (Y) 
and a single stressor indicator (S). If RR ¼ 1.0, then 
poor biological condition is equally likely to occur at a 
site regardless of whether its stressor condition is poor 
or good. Thus, RR ¼ 1.0 indicates no association 
between the stressor and Y. Values of RR .1.0 measure 
the increased risk that YP occurs whenever SP occurs. 

Methods: application of RR and extent to the WSA.— 
The WSA assessed 4 stream-chemistry stressors: N, P, 
SAL, and acidification. It also assessed 4 physical-
habitat indicators of stress: riparian disturbance (RD), 
streambed sediments (SS), I-SFH, and riparian vegeta­
tion cover (RVC). The WSA estimated the extent of 
poor condition of each stressor and also of 2 biological 
response indicators: MIBI and an observed/expected 
(O/E) ratio measuring macroinvertebrate taxon loss 
(USEPA 2006, Paulsen et al. 2008). We estimated RR of 
each stressor (except acidification) for each response 
indicator. We did not estimate acidification risks 
because only 10 of the 1390 sampled WSA sites were 
classified as poor for this stressor. For simplicity, we 
demonstrate the estimation of stressor risks only for 
MIBI. 

In the WSA, extent and RR were estimated as 
described by Van Sickle et al. (2006). Stream sampling 
sites were selected with unequal probabilities, based 
on a sampling weight for each site that equaled the 
total length of stream of that type within the overall 
stream population (Stehman and Overton 1994, Lohr 
1999, Herlihy et al. 2000). Stressor extent was then 
estimated as the sum of sampling weights for sites in 
SP condition, divided by the total sum of weights for 
all selected sites. This total included some selected sites 
(4.1% of total length, nationwide) that could not be 
sampled, primarily because of physical inaccessibility 
or access denials from landowners (USEPA 2006). 

The WSA estimated RR for a stressor from a 2 3 2 
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FIG. 2. Estimated extents (% total stream length) of poor 
condition for 7 stressors (A), and their relative risk for 
macroinvertebrate index of biotic integrity (B), in wadeable 
streams at the US national scale (lower 48 states). Relative 
risk contrasts poor with good conditions, and it excludes 
sites in fair condition. Stressor codes: N ¼ total N, P ¼ total P, 
RD ¼ riparian disturbance, SS ¼ streambed sediments, I-SFH 
¼ instream fish habitat, RVC ¼ riparian vegetation cover, SAL 
¼ salinity. Bars are 95% confidence intervals. 

contingency table containing summed weights for 4 
subsets of sites in combinations of YP or YG and SP or 
SG condition (Appendix 1). All sites in the fair class for 
either Y or S were excluded from these sums. Thus, the 
RRs reported for WSA (USEPA 2006, Paulsen et al. 
2008) express the association between 2 extreme 
classes of stressor and response condition, an approach 
also used in earlier stream surveys (Stoddard et al. 
2005, 2006a). 

We report normal-theory 95% confidence intervals 
for RR and extent, based on their estimated standard 
errors (Van Sickle et al. 2006). We interpret confidence 
intervals for the family of 7 stressors conservatively, 
rather than attempting formal adjustments to maintain 
a familywise confidence level (Miller 1981). We used 
Taylor linearization to estimate the standard errors of 
log(RR) and extent from the estimation variances of 
cell and marginal totals in Appendix 1 (Van Sickle et al. 
2006). We also used the local-neighborhood variance 
estimator of Stevens and Olsen (2003), applied to the 
spatially balanced WSA sampling design (Stevens and 
Olsen 2004), to minimize cell and marginal variances. 
Free software for local neighborhood variances and RR 
estimates is available at www.epa.gov/nheerl/arm/. 

Results: application of RR and extents for the WSA.— 
Viewed side by side, estimates of stressor extent and 
RR express the prevalence and effect size dimensions 
of concern about stressors (Fig. 2A, B; Paulsen et al. 
2008). Each stressor’s confidence interval on RR 
excluded 1.0 (no association; Fig. 2B), a result 
indicating that every stressor had a significant associ­
ation with MIBI condition at the national scale (lower 

48 states). National-scale RRs for the N, P, and SS 
stressors were .2.0, and these stressors had the 
greatest extent of poor condition, .25% of total stream 
length in each case. The combination of greatest 
extents and highest RR for MIBI suggests that N, P, 
and SS are of greatest nationwide concern. At the other 
extreme, the poor-SAL condition had the 4th largest 
relative risk for MIBI, but it occurred in fewer than 3% 
of streams, suggesting that SAL is of little concern 
when viewed from a national perspective. 

Extent and RR are complementary measures of 
stressor concern (Van Sickle et al. 2006). However, they 
might not fully satisfy regional assessment needs for 2 
reasons. First, it is not clear how best to combine the 2 
measures into a single overall assessment when their 
individual assessments are at odds. For example, RD 
in the WSA had a greater extent, but a smaller RR, 
than did RVC (Fig. 2A, B). Second, RR expresses the 
stressor–response association at the site scale because it 
is the increased likelihood of YP occurring at a site, 
given that SP occurs at a site. Thus, RR by itself does 
not measure a stressor’s overall potential effect on a 
regional stream population. Any such measure would 
have to account for stressor prevalence in the 
population, as well as its effect on individual streams 
(Lachin 2000). 

These arguments suggest the need for another index 
of stressor importance, one that combines a stressor’s 
prevalence (extent) and its site-scale potential effect 
(RR) into a single measure of its overall effect on the 
stream population. The population attributable risk is 
such an index. 

Population attributable risk (AR) 

Definitions and properties.—AR has been used widely 
in epidemiology to describe the contribution of a risk 
factor to the prevalence of disease in a population 
(Gefeller 1992, Uter and Pfahlberg 1999). As shown 
below, AR can be expressed as a combination of RR 
and stressor extent. This combination will make sense 
only if Y and S are each defined as dichotomous 
condition classes. However, the WSA and earlier 
assessments did not use consistent classes for RR and 
extent (Stoddard et al. 2005, 2006a, Van Sickle et al. 
2006). They defined RR as a comparison between the 2 
extremes of stressor and response condition (poor vs 
good, ignoring fair sites), whereas extent was defined 
as the proportion of poor streams relative to the total 
for all 3 classes (poor, fair, and good). 

To create 2 exhaustive, mutually exclusive classes for 
each S and Y indicator, we combine the fair and good 
classes into a single class of not-poor condition (N). All 
subsequent definitions and applications of AR, RR, 

www.epa.gov/nheerl/arm
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and extent will contrast the poor and not-poor 
condition classes of Y and of each stressor. This 
example of combining classes differs from the ap­
proach used historically by the Environmental Protec­
tion Agency (EPA) Office of Water. That office has 
chosen to report water quality as either ‘‘fully 
supporting’’ or ‘‘not fully supporting’’ aquatic life 
use, where the ‘‘not fully supporting’’ class could be 
formed by combining ‘‘partially supporting’’ and ‘‘not 
supporting’’ (analogous to our fair and poor) into a 
single class. 

AR assumptions.—AR is derived directly from 3 
assumptions about the relationships between stressors 
and a biological response indicator. First, AR explicitly 
assumes stressor causality. That is, the poor condition 
of a stressor at a site is assumed to have caused that 
site to have an increased probability of poor biological 
condition. Second, AR assumes that a stressor’s causal 
effects would be completely reversed if that stressor 
were eliminated. In the context of our condition 
classes, a stressor would be eliminated from a regional 
population of streams if every stream in poor stressor 
condition were converted to not-poor condition 
through restoration or remediation activities. Third, 
AR, like RR, assumes that the effects of multiple 
stressors are independent enough that each stressor’s 
effect can be estimated reliably in isolation from other 
stressors. In the Discussion, we critically evaluate these 
3 assumptions in the context of regional assessments of 
aquatic stressors. We also describe an application of 
AR to groups of nonindependent stressors. 

AR derivation.—Recall that [Pr(YP)] is the probability 
of finding poor biological condition in a stream 
selected at random from a regional population. 
Suppose that stressor S could be eliminated from the 
population, so that all streams currently in poor 
stressor condition (SP) could be converted to not-poor 
condition (SN). Under the reversibility assumption of 
AR, this blanket conversion would cause the proba­
bility of poor biological condition in every formerly 
stressed stream to decline from its stressed level, 
Pr(YPjSP), to the unstressed level, Pr(YPjSN). As a 
result, stressor elimination would lead to all streams in 
the population having a probability of poor biological 
condition equal to Pr(YPjSN). Attributable risk express­
es the amount of decrease in the overall probability of 
poor biological condition, from Pr(YP) to  Pr(YPjSN), as 
a proportion of the original probability, Pr(YP). 

Thus, we define the AR of a stressor to be the 
proportional reduction in the extent of poor biological 
condition that would be achieved if that stressor were 
eliminated from the population (Walter 1976, Uter and 
Pfahlberg 1999, Lachin 2000): 

PrðYPÞ - PrðYPjSN Þ 
AR ¼ : ½2]

PrðYPÞ 

After some algebra (see Appendix 2), AR can be 
expressed as a combination of a stressor’s extent and 
its RR (Uter and Pfahlberg 1999, Lachin 2000): 

PrðSPÞðRR - 1Þ 
AR ¼ : ½3]

1 þ PrðSPÞðRR - 1Þ 

Equation 3 shows that a stressor has 0 AR if it has 
either 0 extent [Pr(SP) ¼ 0] or no association with the 
biological response indicator (RR ¼ 1). Also, the 
equation shows that, if AR 6¼ 0, then any increase in 
either a stressor’s extent or its RR also will increase its 
AR. In applications, we report 100 3 AR as the % 
reduction in Pr(YP) that could be achieved by 
eliminating a stressor. 

Methods: application of AR for the WSA.—We used the 
MIBI as the response indicator (Y) and estimated AR 
for each of the 7 WSA stressors. We also re-estimated 
RR and extent values for each stressor based on the 
new dichotomous classes of poor vs not-poor condi­
tion. 

We estimated AR from the same 2 3 2 table used to 
estimate extent and RR (Appendix 1). Our estimates 
included only those WSA sites (n ¼ 1352) with 
complete data for MIBI and all 7 stressors. We made 
estimates at the US national level (contiguous 48 
states) and for each of 3 major regions (Paulsen et al. 
2008; Table 1): Eastern Highlands (n ¼ 265 sampled 
sites), Plains and Lowlands (n ¼ 401), and West (n ¼ 
686). 

We modified the Taylor-linearization approach of 
Van Sickle et al. (2006) to construct confidence 
intervals (CIs) for AR. The AR estimate (Appendix 1) 
can be rewritten as ARest ¼1 – G, where G ¼ (c/[a þ c])/ 
([c þ d]/[a þ b þ c þ d]) (see Appendix 1 for definitions 
of a, b, c, and d). We first estimated the standard error 
for log(G) ¼ log(c) – log(a þ c) – log(c þ d) þ log(a þ b þ c 
þ d) by applying Taylor linearization and local 
variance estimation (Stevens and Olsen 2003) to each 
term on the right-hand side (see equation A2 and 
subsequent text in Van Sickle et al. 2006). We then 
constructed a normal-theory CI for log(G) based on its 
standard error. Back-transformation of the endpoints 
of this CI gave the CI for G, whose endpoints were 
transformed again to give the CI for ARest ¼ 1 – G  
(Fleiss 1979, Liu 2001). 

Results: application of AR for the WSA.—Side-by-side 
estimates show how AR expresses the combined 
magnitudes of extent and RR (Fig. 3A–D). For 
example, in the West, N, P, and SS stressors had 
similar extents (Fig. 3D). However, SS had the highest 
RR of the 3 stressors and hence had the greatest AR. In  
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FIG. 3. Estimated extent (% total stream length) of poor condition for 7 stressors, and their relative risk and attributable risk for 
the macroinvertebrate index of biotic integrity (MIBI) in the US (national ¼ contiguous 48 states) (A), and in the Eastern Highlands 
(B), Plains and Lowlands (C), and West (D) regions. Attributable risk is expressed as the % reduction in the extent of poor MIBI 
condition (see derivation in Methods and Results). Risk estimates contrast poor with not-poor conditions. Ex(MIBI) is the extent of 
poor condition for MIBI. Stressor codes: N ¼ total N, P ¼ total P, RD ¼ riparian disturbance, SS ¼ streambed sediments, I-SFH ¼ 
instream fish habitat, RVC ¼ riparian vegetation cover, SAL ¼ salinity. Bars are 95% confidence intervals. 

the Eastern Highlands, this pattern was reversed (Fig. 

3B). The similar RRs for all 3 stressors combined with 

greater extents of N and P resulted in SS having the 

lowest AR of the 3 stressors. RR for SAL was close to 

those of N, P, and SS. However, the AR for SAL was 

the lowest (,5%) of all stressors in every region 

because of SAL’s small extent. 

N, P, and SS had the greatest ARs of all 7 stressors, 

both nationally and regionally (Fig. 3A–D). For 

example, in the Eastern Highlands, ARs for N, P, and 

SS were 21%, 25%, and 18%, respectively (Fig. 3B). If 

any one of these stressors could be eliminated, 

equation 2 predicts that the extent of poor MIBI 

condition would be reduced from 57% (Fig. 3B) to (1 – 

AR/100) 3 57%, i.e., to 45%, 43%, or 47% for N, P, and 

SS, respectively, under the assumption of complete 
reversibility of stressor effects. Similar predictions can 
be made for other stressors and regions, given the 
estimated extents of poor MIBI. For example, stressors 
have similar ARs in the West as seen elsewhere, but 
their elimination would produce smaller absolute 
decreases in the West’s extent of poor MIBI (28.0%) 
(Fig. 3D) because it is already lowest among the 3 
regions. 

Combined AR for multiple correlated stressors 

Definitions and properties.—AR, like RR, assumes that 
each stressor’s effect is independent of the others and 
can be estimated in isolation from other stressors. 
Thus, AR and RR are analogous to bivariate correla­
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tions as models for the relationship between stressor 
and response indicators. In addition, the definition of 
AR assumes that one stressor could be eliminated from 
a regional population without altering the distribu­
tions of any other stressors. These assumptions are 
unrealistic, to the degree that stressors are highly 
correlated. For example, within the WSA reference 
sites, continuous variables representing human distur­

1stbance were sufficiently correlated that their 
principal component could adequately represent a 
single, generalized disturbance gradient (Herlihy et al. 
2008). 

We suggest estimating the combined attributable risk 
for highly correlated stressors. The combined AR of a 
group of 2 stressors is the proportional reduction in 
Pr(YP) that would be achieved by eliminating that 
group of stressors (Land et al. 2001). We calculated the 
combined AR from equation 2, with SN replaced by the 
joint occurrence of condition N for all stressors in the 
group. Thus, our combined AR defines a site to be 
poor for the group of stressors if at least one of the 
stressors in the group is in poor condition. 

The ARs of individual stressors sum to their 
combined AR only if the stressors are uncorrelated 
(Walter 1980, Land et al. 2001). For example, the 7 
WSA stressors have a combined AR of 68% at the 
national level, but their individual ARs (Fig. 3A) sum 
to 107% because of stressor intercorrelations. Thus, the 
AR estimates of Fig. 3A overestimate the effects of 
individual stressors because AR of each stressor is 
expressing some portion of the effects from other 
correlated stressors. 

Depending on the strengths of between-stressor 
correlations, more reliable estimates of stressor effects 
can be made by comparing the combined ARs of  
separate groups of closely related stressors. Stressors 
might be grouped based on one or more of the 
following criteria: 1) stressors within a group represent 
closely linked physical, chemical, or biological pro­
cesses that affect the response indicator, 2) stressors 
within the same group are more strongly statistically 
correlated than are stressors from different groups, and 
3) restoration or remediation efforts would be more 
likely to manage (i.e., reduce or eliminate) all stressors 
within a group than to manage them separately. 

Methods: application of combined AR for the WSA.—To 
illustrate, we compare the combined ARs of 2 groups 
each containing 2 WSA stressors. First, we combined N 
and P stressors into a ‘‘nutrients’’ group. These 
stressors both affect aquatic systems through the 
enrichment of primary production, and they probably 
would be managed together through reduction of 
fertilization and wastewater inputs from watersheds 
(USEPA 2006). Second, we combined I-SFH and RVC 

stressors into a ‘‘woody vegetation’’ group. Low RVC 
can lead to increased water temperatures and reduced 
ability to intercept nutrients and sediments from 
nonpoint sources. Low RVC also leads to reduced 
large wood in streams, fewer streambank roots, and 
less overhanging vegetation, all of which are impor­
tant components I-SFH. RVC and I-SFH stressors 
would both be reduced by managing for enhanced 
riparian woody vegetation. 

The nationwide product-moment correlations be­
tween categorical stressors (Zar 1999, Van Sickle et al. 
2006) are 0.41 for N vs P and 0.20 for I-FSH vs RVC. 
These within-group stressor correlations are both 
larger than the 4 between-group correlations, which 
range from 0.02 to 0.12. Thus, our 2 groups of 2 
correlated stressors each should have little confound­
ing of group-level effects. 

Results: application of the combined AR for the WSA.— 
Based on point estimates at the national level and in 2 
of 3 regions, nutrient stressors had a greater combined 
AR for MIBI than did woody vegetation stressors (Fig. 
4). However, in the Plains and Lowlands, woody 
vegetation had a slightly higher combined AR than did 
nutrients, probably because the extent of poor condi­
tions was greater for the 2 woody vegetation stressors 
than for nutrients. However, CIs on combined AR 
were relatively wide, resulting in overlap within the 
Plains and Lowlands and West (Fig. 4). 

The combined AR of all 7 WSA stressors was 68%. If 
one assumes reversibility of stressor effects, then this 
combined AR predicts that elimination of all 7 
stressors would reduce the national extent of poor 
MIBI from 44.3% (Fig. 3A) to (1 – AR/100) 3 44.3% ¼ 
14.2%. Thus, elimination of the 7 stressors would not 
lead to complete elimination of poor MIBI conditions. 
The combined AR of the 7 stressors is ,100%, in part, 
because MIBI is also influenced by natural factors, as 
well as additional stressors, such as stream tempera­
ture, toxic materials, and hydrologic modification, that 
were not assessed by the WSA. 

Discussion 

We think that population AR is a valuable addition 
to the extent and RR measures for assessing the 
relative effects of aquatic stressors at regional and 
national scales. Extent measures the regional preva­
lence of a stressor, and RR measures its site-scale effect. 
AR combines these 2 measures into a new estimate of a 
stressor’s probable population-scale effect. This feature 
is especially helpful for stressors whose RR and extent 
estimates give disparate pictures of stressor influence, 
such as seen for SAL (Fig. 2A, B). 
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FIG. 4. Regional combined attributable risks of the 
nutrients and woody vegetation (woody veg) stressor groups 
for the macroinvertebrate index of biotic integrity (MIBI). 
Attributable risk is expressed as the % reduction in the extent 
of poor MIBI condition. Solid lines denote 95% confidence 
intervals. Bars are 95% confidence intervals. 

Assumptions and interpretations of AR 

Users of AR must contend with and communicate 
clearly its assumptions of causality and reversibility. 
We discuss these assumptions here, and they have 
been examined critically in the literature on human 
epidemiology (Greenland and Robins 1988, Rockhill et 
al. 1998, Uter and Pfahlberg 1999). 

Causality.—A large AR does provide supporting 
evidence for a presumed causal relationship between 
stressor and response. Unfortunately, AR, like any 
other correlational statistic, cannot demonstrate cau­
sality on its own (Beyers 1998, Shipley 2000, USEPA 
2000). The WSA report (USEPA 2006) sketches another 
line of evidence for causality, namely, the chemical, 
physical, and biological processes by which each of 
our 7 stressors could have caused poor MIBI condition. 
However, a strong argument that a stressor has 
actually caused impairment requires multiple addi­
tional lines of evidence (Suter 1993, USEPA 2000, 
Collier and Adams 2003). Applications of AR to 
regional assessments should regard stressor causality 
as an unproven assumption because of the difficulty of 
assembling multiple lines of causal evidence at a 
regional scale. 

However, causality is not an unreasonable assump­
tion to make for purposes of evaluating stressors at a 
regional scale. The assumption of causality underlies 

most observational studies of stressor–response rela­
tionships, even though researchers are careful to state 
that their models are strictly associational. Such studies 
often use causal language, and they are motivated by 
the implicit causal assumption that stressors ‘‘stress’’ 
aquatic systems. For example, Van Sickle et al. (2006) 
estimated RR from co-occurrences of poor stressor and 
response conditions, while interpreting it as a measure 
of the severity of stressor effects (see also Yuan and 
Norton 2003). Yuan and Norton (2004), Kapo and 
Burton (2006), and de Zwart et al. (2006) also have 
proposed population-level measures of stressor effects 
that, like AR, are based on associational data and 
models but assume causality, either implicitly or 
explicitly. However, unlike AR, these 3 methods make 
their population estimates by summing the site-specific 
effect contributions of each stressor across multiple 
sites in the stream or lake population. 

Reversibility.—Potential users of AR might be willing 
to assume causality, but they might balk at assuming 
reversibility. Even if a stressor could be eliminated, the 
resulting degree of ecosystem recovery and its timing 
generally are difficult to predict (Suter 1993). Thus, AR 
estimates are probably best interpreted as upper 
bounds or best-case scenarios on the benefits that 
one might expect from eliminating stressors because 
they assume that stressor effects are completely 
reversed. For example, in the Eastern Highlands, AR 
predicts that elimination of poor woody vegetation 
conditions would improve the MIBI condition class in 
,10% of streams (Fig. 4). Likewise, in the West, 
elimination of the single stressor with the greatest AR 
(SS) could decrease the extent of poor MIBI by only 8 
percentage points (Fig. 3D; equation 2), primarily 
because that extent is already relatively low (28%). In 
both cases, AR predicts that relatively little regional 
benefit would accrue from stressor elimination, even 
under the idealized scenario of full reversibility of 
stressor effects. 

To be minimally realistic, any AR scenario must be 
based on attainable targets for stressor elimination and 
biological recovery (Rockhill et al. 1998). For example, 
our WSA application of AR used poor and not-poor 
classes. Application of AR to these classes assumes that 
streams in poor stressor or poor biological conditions 
could attain at least fair condition (i.e., not poor), 
following stressor elimination and recovery. Fair 
condition would seem to be a realistic target. In 
contrast, application of AR to good (reference) vs not-
good conditions would have to assume that every 
stream could be converted to reference conditions 
through stressor eliminations. This scenario could be 
much less realistic, particularly in regions where 
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reference conditions are defined primarily by near-
pristine streams. 

Condition classes for AR 

AR requires that continuous stressor and biological 
response gradients be converted to dichotomous 
condition classes, a process that collapses gradients 
much more severely, for example, than do the 6 
general classes of aquatic life use condition identified 
by Davies and Jackson (2006). Dichotomous classifica­
tions might be difficult to accept, in part because all 
data analysis outcomes for such classes depend 
critically on the single boundary chosen to separate 
them. In addition, one would expect the average 
conditions of dichotomous classes to differ less than 
the average conditions of the extremes of 3 classes. 
Thus, nearly all of the RRs of Fig. 3A (based on 2 
classes) are lower than corresponding values based on 
the extremes of 3 classes (Fig. 2B). Use of dichotomous 
condition classes might lead to some concerns, but in 
practice, states and tribes routinely set standards and 
criteria to define waters as being impaired or not 
impaired. 

AR for correlated stressors 

In practice, managers often might want to compare 
the combined ARs of groups of closely  related  
correlated stressors (Fig. 4) rather than to estimate 
their approximate individual effects. Van Sickle et al. 
(2006) also combined highly correlated stressors, in a 
qualitative way, to help interpret their relative risks. 
We advocate a combined-stressor approach for its 
simplicity and for its realistic emphasis on joint 
modeling and management of stressors whose effects 
are confounded. Future research might help develop 
additional methods for combining class-based stressor 
variables. 

An alternative strategy for multiple stressors is to 
adjust the AR of an individual stressor for the effects of 
other correlated stressors or nonstressor covariates 
(Walter 1980, Eide and Gefeller 1995, Benichou 2001). 
The adjusted AR is analogous to a regression 
coefficient for a stressor in a multiple regression model 
that includes other stressors. The adjusted AR might be 
especially helpful in dealing with the potentially 
confounding effects of natural (nonanthropogenic) 
variables on biological responses (Herlihy et al. 2008). 

However, AR adjustments for multiple dichotomous 
stressors, as in the WSA case, are complex and might 
require additional assumptions and models (Benichou 
2001). In addition, adjusted ARs (like multiple regres­
sion models), cannot partition unambiguously the 
overall variance explained by multiple correlated 

stressors into their individual contributions. A ‘‘fair’’ 
partitioning of joint stressor effects has been suggested 
for adjusted AR (Cox 1985, Eide and Gefeller 1995, 
Land et al. 2001) and for multiple regression (Kruskal 
1987, Grömping 2007). However, the partitioning 
algorithm is ad hoc, derived neither from statistical 
theory nor process-based knowledge of joint effects 
(Cox 1985). We have not illustrated AR adjustments 
and partitioning in our paper because of these 
complications. We anticipate further research on 
applications of adjusted AR to aquatic stressors. 

Uncertainty of AR estimates 

We have stated our results for extent, RR, and AR 
without considering the estimation uncertainties of the 
3 statistics. The width of our AR CIs, relative to AR 
estimates, are greater than the corresponding relative 
widths for extent and RR CIs, and the AR intervals for 
different stressors often overlap (Figs 3, 4). The wide 
CIs for AR seem surprising, given the large samples 
from which AR was estimated (range: 265 [Eastern 
Highlands] to 1352 [nationwide]). However, other 
methods for estimating AR standard errors (Liu 2001, 
Lehnert-Batar et al. 2006), including jackknifing, yield­
ed even wider CIs for our WSA AR estimates. We do 
not know the exact reasons for the relatively high 
uncertainty in AR estimates. Note, however, that the 
AR estimation uncertainty compounds the estimation 
uncertainties of RR and stressor extent (equation 3). 

Sampling designs for estimating AR and RR 

AR and RR can be estimated directly only from the 
cross-sectional sampling design used by the WSA and 
similar regional aquatic surveys (Stoddard et al. 2005, 
2006a, USEPA 2006). In this design, sampling units 
(stream sites) represent a cross-section of the regional 
stream population and are selected at random without 
regard for their stressor or biological condition status 
(Suter 1993, Lachin 2000). The cross-sectional design 
yields unbiased estimates of each cell in Appendix 1 
and thus unbiased estimates of extent, RR, and AR 
(Walter 1976). Some cross-sectional designs use equal-
probability weighting (simple random sampling) 
when selecting sites, rather than the unequal weight­
ing used by recent surveys (Stoddard et al. 2005, 2006a, 
USEPA 2006). In the equal-weighting case, risk and 
extent estimates can be calculated from site counts 
rather than weight sums (Appendix 1). 

RR also could be estimated from a 2-group gradient 
study, in which one first selects an approximately 
equal number of streams in poor condition (group 1) 
and in not-poor condition (group 2) for a given S. 

Estimates of YP, made separately within each group, 
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then give the numerator and denominator of equation 
1. This 2-group gradient study design is analogous to a 
prospective design in human health research, in which 
exposed (to a risk factor) and unexposed subjects are 
followed over time to estimate their probabilities of 
developing a disease. Like the prospective design, the 
2-group gradient study cannot, by itself, estimate AR 
because AR also requires knowledge of Pr(SP) (equa­
tion 3; Walter 1976). Retrospective sampling, another 
design commonly used in human health studies, 
would select groups of streams based on their 
biological response condition rather than their stressor 
condition and then estimate stressor extent within each 
group. However, this 3rd design can estimate neither 
RR nor AR without additional information (Walter 
1976). 

Final remarks 

AR estimates the expected regional-scale improve­
ment in aquatic biological condition that would result 
from regional elimination of a stressor, under the 
assumptions that the stressor caused impairment and 
that its effects can be reversed. At a regional scale, the 
AR assumptions (causality and reversibility of stressor 
effects) cannot be validated realistically and must be 
viewed as ‘‘what if’’ scenarios. However, we think that 
such scenarios can help policymakers and managers to 
identify key regional stressors and to estimate the 
possible benefits of stressor remediation. When used 
together with RR and extent, AR is a potentially useful 
tool for regional and national-scale assessment of 
aquatic stressors. 
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APPENDIX 1. Estimating extent, relative risk (RR), 
and attributable risk (AR) from a 2 3 2 table of 
observed stressor and response occurrences (adapted 
from Van Sickle et al. 2006). Table entries (a–d) are 
sums of sampling weights (for unequal-probability 
sampling) or site counts (for simple random sampling) 
across all sites having the stated combination of 
stressor (S) and response (Y ) class. Stressor and 
response classes are defined as not-poor (N; good þ
fair) and poor (P). When estimating relative risk (RR), 
sites in fair condition for the stressor or response were 
excluded from the not-poor class (N) to provide a 
contrast between good and poor conditions (USEPA 
2006). 

S
 
Y N P 
  
N a b 
  
P c d 
  

Estimates of extent, RR, and AR are given by 
(Extent of SP) ¼ (b þ d)/(a þ b þ c þ d) 
(Extent of YP) ¼ Pr(YP)est ¼ (c þ d)/(a þ b þ c þ d) 
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RR ¼ (d/[b þ d])/(c/[a þ c]) 
AR ¼ [Pr(YP)est – c/(a þ c)]/Pr(YP)est 

APPENDIX 2. Derivation of equation 3 from the 
definition of attributable risk (AR) (equation 2). 

By the law of total probability (Rice 1988), Pr(YP) can 
be written as 

Pr(YP) ¼ Pr(YPjSP)Pr(SP) þ Pr(YPjSN)Pr (SN) [A.1] 

In equation A.1, substitute (1 - Pr(SP)) for Pr(SN), 
and insert the resulting expression for Pr(YP) into the 
numerator of equation 2 to yield 

PrðSPÞ½PrðYPjSPÞ - PrðYPjSN Þ]
AR ¼ : ½A:2]

PrðYPÞ 

In equation A.2, the risk reduction achieved by 

eliminating the stressor is expressed as the extent of 

poor stressor condition times the difference in risk of 

YP under poor vs not-poor stressor conditions (Lachin 

2000). Note that equation A.2 compares these 2 

conditional risks of YP as a difference, whereas relative 

risk (RR) (equation 1) compares the same 2 risks as a 

ratio. 

To complete the derivation of equation 3, substitute 

equation A.1 for Pr(YP) in the denominator of equation 

A.2, and substitute (1 - Pr(SP)) for Pr(SN) to give 

PrðSPÞ½PrðYPjSPÞ - PrðYPjSN Þ]
AR ¼ 

PrðYPjSPÞ þ PrðSPÞ½PrðYPjSPÞ - PrðYPjSN Þ]
½A:3] 

Divide the numerator and denominator of equation 

A.3 by Pr(YPjSN) and apply the definition of relative 

risk (RR) (equation 1) to obtain equation 3. 


